Glacier coverage data on the Tibetan Plateau in 2017 (TPG2017, Version1.0)
The Tibetan Plateau Glacier Data –TPG2017 is a glacial coverage data on the Tibetan Plateau from selected 210 scenes of Landsat 8 Operational Land Imager (OLI) images with 30-m spatial resolution from 2013 to 2018, among of which 90% was in 2017 and 85% in winter. Therefore, 2017 was defined as the reference year for the mosaic image. Glacier outlines were digitized on-screen manually from the 2017 image mosaic, relying on false-colour image composites (RGB by bands 654), which allowed us to distinguish ice/snow from cloud. Debris-free ice was distinguished from the debris and debris-covered ice by its higher reflectance. Debris-covered ice was not delineated in this data. The delineated glacier outlines were compared with band-ratio (e.g. TM3/TM5) results, and validated by overlapping them onto Google Earth imagery, SRTM DEM, topographic maps and corresponding satellite images. For areas with mountain shadows and snow cover, they were verified by different methods using data from different seasons. For glaciers in deep shadow, Google EarthTM imagery from different dates was used as the reference for manual delineation. Steep slopes or headwalls were also excluded in the TPG2017. Areas that appeared in any of these sources to have the characteristics of exposed ground/basement/bed rock were manually delineated as non-glacier, and were also cross-checked with CGI-1 and CGI-2. Steep hanging glaciers were included in TPG2017 if they were identifiable on images in all other three epochs (i.e. TPG1976, TPG2001, and TPG2013). The accuracy of manual digitization was controlled within one half-pixel. All glacier areas were calculated on the WGS84 spheroid in an Albers equal-area map projection centred at (95°E, 30°N) with standard parallels at 15°N and 65°N. Our results showed that the relative deviation of manual interpretation was less than 3.9%.
The name of the data file is tpg2017data. This data is in raster tiff format, which can be used in geographic information system software such as ArcMap.
[1] Ye, Q.H., Zong, J.B., Tian, L.D., Cogley, J.G., Song, C.Q., & Guo, W.Q. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s-2000-2013. Journal of Glaciology, 63(238), 273-287. doi:10.1017/jog.2016.137 (查看)
To respect the intellectual property rights, protect the rights of data authors, expand services of the data center, and evaluate the application potential of data, data users should clearly indicate the source of the data and the author of the data in the research results generated by using the data (including published papers, articles, data products, and unpublished research reports, data products and other results). For re-posting (second or multiple releases) data, the author must also indicate the source of the original data.
地球大数据科学工程专项时空三极环境项目(XDA19000000)
湖泊演变及气候变化响应(2019QZKK0202)
No record
No record
No record
Sign In to add comments
三江源国家公园星空地一体化生态监测数据平台 © 2018-2021 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件