三江源国家公园星空地一体化生态监测数据平台
Ecological Data Center of Sanjiangyuan National Park

当前浏览:Tibetan Plateau


  • The dataset was produced based on MODIS data. Parameters and algorithm were revised to be suitable for the land cover type in the Three-River-Source Regions. By using the Markov de-cloud algorithm, SSM/I snow water equivalent data was fused to the result. Finally, high accuracy daily de-cloud snow cover data was produced. The data value is 0(no snow) or 1(snow). The spatial resolution is 500m, the time period is from 2000-2-24 to 2018-12-31. Data format is geotiff, Arcmap or python+GDAL were recommended to open and process the data.

    查看详情
  • The permafrost stability map was created based on the classification system proposed by Guodong Cheng (1984), which mainly depended on the inter-annual variation of deep soil temperature. By using the geographical weighted regression method, many auxiliary data was fusion in the map, such as average soil temperature, snow cover days, GLASS LAI, soil texture and organic from SoilGrids250, soil moisture products from CLDAS of CMA, and FY2/EMSIP precipitation products. The permafrost stability data spatial resolution is 1km and represents the status around 2010. The following table is the permafrost stability classification system. The data format is Arcgis Raster.

    查看详情
  • This dataset was derived from long-term daily snow depth in China based on the boundary of the three-river-source area. The snow depth ranges from 0 to 100 cm, and the temporal coverage is from January 1 1980 to December 31 2018. The spatial and temporal resolutions are 0.25o and daily, respectively. Snow depth was produced from satellite passive microwave remote sensing data which came from three different sensors that are SMMR, SSM/I and SSMI/S. Considering the systematic bias among these sensors, the inter-sensor calibrations were performed to obtain temporal consistent passive microwave remote sensing data. And the long-term daily snow depth in China were produced from this consistent data based on the spectral gradient method.

    查看详情